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Abstract and Keywords
The theory of optimal forest management is a key component of the economic 
theory of natural resources due to the fact that forests constitute a major 
renewable resource. It also constitutes one of the key examples of vintage 
capital theory, making it an important factor in understanding the general theory 
of intertemporal allocation. This chapter explores the theory of optimal forest 
management, focusing on the forester's (optimal) policy function. Whereas the 
literature places an (almost exclusive) emphasis on long-run behaviour of 
optimally managed forests, the chapter focuses on the optimal harvesting and 
replanting decisions that should be implemented currently, given any inherited 
forest. Using bifurcation analysis, it examines how the optimal policy function 
changes in response to variations in two key parameters of the forestry model: 
the growth rate of trees and the planner's discount rate.

Keywords:   theory of optimal forest management, bifurcation analysis, natural resources, 
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Introduction
The theory of optimal forest management occupies an important place in the 
economic theory of natural resources since forests constitute a major renewable 
resource. It is also important in one's understanding of the general theory of 
intertemporal allocation, as it constitutes one of the key examples of the vintage 
capital theory.
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This paper examines the theory of optimal forest management with a view to 
describing the forester's (optimal) policy function. In contrast to the literature's 
(almost exclusive) emphasis on long run behaviour of optimally managed forests, 
we focus on the optimal harvesting and replanting decisions that should be 
implemented currently, given any inherited forest.

For this purpose, we use an extremely simplified forestry model (introduced by 
Wan 1989), involving a single species of trees on a piece of land, on which trees 
grow from newly planted saplings to young trees in one year, and achieve full 
maturity at the end of two years; after that the trees decay and become 
worthless. This allows us to describe the forest in terms of a single real variable, 
x, which represents the stock of (fraction of the land occupied)  (p.51) mature 
trees. The growth of the timber content as young trees grow to maturity can be 
captured in terms of a real valued biological parameter a. Welfare is derived 
from timber (by harvest of young or mature trees) using a (strictly concave) 
welfare function w, and future welfares are discounted by a discount factor δ. 
The optimal forest management problem is to determine the harvesting (and 
replanting) decisions over time in order to maximize the discounted sum of 
welfares.

From the point of view of the general theory of intertemporal allocation, it is 
important to point out that a key feature of the model is the fact that its 
transition possibility set does not have free disposal of the initial stock. If one 
has a higher stock of mature trees today, then one necessarily has a lower stock 
of young trees today and, therefore, a lower stock of mature trees tomorrow. 
This ‘time to build’ mature trees imposes a significant constraint on the forester, 
leading to important implications for the nature of the policy function.

We use standard dynamic programming methods to establish the existence of a 
(continuous) policy function, h, on the set of stocks I ≡ [0, 1]. Thus the transition 
dynamics as well as long-run behaviour of the optimally managed forest are fully 
described by the dynamical system (I, h). In describing the nature of the optimal 
policy function h, the key concept is the Faustmann threshold.

Faustmann (1968) was concerned with the optimal forest rotation problem when 
(in our terminology) the welfare function w is linear. In this case, it is optimal to 
cut all the mature trees and only the mature trees, regardless of the inherited 
forest. This policy can be called the Faustmann policy.1 The Faustmann policy 
leads to persistent fluctuations in harvests, except when the initial forest is the 
stationary optimal forest.

When the welfare function w is strictly concave, dynamic optimization has a 
tendency to smooth consumption over time. When future utilities are not 
discounted, this desire to smooth consumption takes over completely, leading to 
asymptotic convergence of  (p.52) optimal forests to the stationary optimal 
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forest.2 When future utilities are discounted, the consumption smoothing aspect 
is dampened by the fact that the benefits of such smoothing come in the future, 
which have less weight in the objective function compared with the present. This 
conflict is captured precisely by the existence of a stock of mature trees x(δ), 
such that for all initial stocks x ∈ [x (δ), 1], the Faustmann policy is optimal, while 
for all initial stocks x ∈ [0, x (δ)), the Faustmann policy is not optimal. We refer to 

x (δ) as the Faustmann threshold.

For initial stocks x ∈ [0, x (δ)) where the Faustmann policy is not optimal, an 
explicit solution of the policy function will depend on the actual welfare function 
used (apart from a and δ). However, the following qualitative description can be 
provided. The policy function is monotone non-decreasing in this range, and 
exhibits growth in the stock of mature trees.

This description of the policy function enables us to characterize the long run 
behaviour of the forest stock starting with any initial forest stock. The range of 
stocks M ≡ [x (δ), 1 − x (δ)] is seen to be an invariant set of the dynamical 
system (I, h); all other stocks are transitory, and M is the global attractor of all 
trajectories generated by the optimally managed forest. But, the policy function 
also enables us to describe the optimal transition dynamics. For instance, when 
the initial stock x of mature trees is small, the forester should cut down all the 
mature trees and some young trees as well, but take care to see that the 
remaining stock of young trees exceeds x, so that one ends up with a higher 
stock of mature trees tomorrow than one started out with today.

From the point of view of the general theory of intertemporal allocation, a 
particularly noteworthy aspect of the forestry model is that the amplitude of the 
period two Faustmann cycle that represents the long run optimal forest depends 
on the inherited forest. The history dependence of long run behaviour suggests 
the intriguing possibility that starting with low initial forest stocks, which differ 
from each other only slightly, one might end up with significantly different long 
run behaviour in terms of the volatility of optimal harvests. This sensitive 
dependence of long run behaviour on initial conditions can be viewed as an ‘anti-
turnpike’ result.

 (p.53) In the final section, we provide an analysis of the change in long run 
optimal behaviour with respect to the parameters of the forestry model. Since 
long run behaviour is captured by the invariant set [x (δ), 1 − x (δ)], we provide a 
formula characterizing the Faustmann threshold x (δ). Using this, we see that 
the average amplitude of fluctuations in the long run increases with increases in 
the intertemporal elasticity of substitution and with the growth rate (b = (1 − a)/
a) of trees. However, the relationship is nonmonotonic with respect to changes 
in the discount factor. We are able to identify a critical discount factor (δ ̂= (1/
√b)) such that for all larger discount factors, the average amplitude of long run 
fluctuations decreases with increases in the discount factor; as one approaches 
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the limiting case of perfect patience, the maximum amplitude of long run 
fluctuations goes to zero, consistent with McKenzie's neighbourhood turnpike 
theorem (McKenzie 1982).

Preliminaries
A Model of Forest Management

The model of forest management we use is the simplest one whose primitives 
are described by a triplet (a, w, δ), where a ∈ (0, 1) is a biological parameter 
reflecting the growth possibilities of trees, w is a real valued function on the non-
negative reals which measures the welfare from timber harvest and δ ∈ (0, 1) is 
the discount factor, representing the forest manager's time preference.

Trees are assumed to grow from newly planted saplings to one year trees (young 
trees), and at the end of two years achieve full maturity, after which the trees 
decay and become worthless. It is assumed that no part of the land is left fallow 
so that at the end of each period, the forest is occupied by trees, be they mature 
or young. Denote by x the fraction of land currently occupied by mature trees; 
then 1 − x is the fraction of land occupied by young trees. The mature trees are 
necessarily going to be harvested because they decay after reaching maturity. 
However, for existing young trees, a decision has to be made as to what fraction 

y of the land is to be left with young trees to mature during the coming period, 
while the remainder is harvested. Clearly, 0 ≤ y ≤ 1 − x. At the end of the period 
then the fraction of land occupied by  (p.54) mature trees equals y. Assuming 
that the stock of each vintage of tree is proportional to the area occupied by that 
vintage and normalizing the area of land occupied by the forest to be one unit, 
we may identify the fractions x and y with the stocks of mature trees occupying 
the forest at the beginning and at the end of one period.

Choosing the timber content of a mature tree as the unit of measurement, we 
denote the timber content of a young tree by a. The amount of timber harvested 
in the current period equals the timber content of the mature trees, x, together 
with the timber content of the young trees which are cut down. Since a fraction 
1 − x of the land is occupied by young trees, of which a part y is left to mature, 
the fraction of land occupied by young trees which are harvested during the 
period equals (1 − x − y) and the timber content of this equals a (1 − x − y). The 
total timber harvested, therefore, equals [x + a (1 − x − y)].

Denoting the total timber harvested, by cutting trees of the two different 
maturities during any period t ≥ 0, by the number ct, the welfare obtained from 
the timber harvested in that period is w (ct). The optimal forest management 
problem, starting from an initial stock of mature trees and young trees, is one of 
making a decision in each period t = 0, 1, 2…. as to how much to harvest ct, so 
as to maximize the discounted sum of welfare obtained, Σ∞ 0 δtw(ct).
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The problem of optimal forest management can be viewed as a special case of 
discounted dynamic optimization in a standard reduced form model of optimal 
intertemporal allocation, described by a triplet (Ω, u, δ), where Ω is a transition 
possibility set, defined by: Ω ≡ {(x, y): 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 − x} and u: Ω → ℝ 
is a utility function defined by u (x, y) ≡ w (x (1 − a) + a (1 − y)). A path from x ∈ I
≡ [0, 1] is an infinite sequence 〈xt〉 satisfying x 0 = x and (xt, xt +1) ∈ Ω for all t ≥ 
0. A path 〈xt 

*〉 from x is optimal if for every path 〈xt〉 from x:

The problem of optimal forest management is equivalent to that of finding an 
optimal path in this reduced form model.

 (p.55) Value and Policy Functions

The theory of dynamic programming is ideally suited to characterizing optimal 
behaviour in our model. To apply this theory, we note some basic properties of 
the model.

The transition possibility set Ω is a compact, convex set which contains (0, 0). 
For every x ∈ I, there is y ∈ I such that (x, y) ∈ Ω. There is ‘free disposal’ of the 
terminal stock: if (x, y) ∈ Ω and 0 ≤ y′ ≤ y then (x, y′) ∈ Ω. However, free disposal 
of the initial stock is not possible; in fact, what is true is that if (x, y) ∈ Ω and 0 ≤ 

x′ ≤ x then (x′, y) ∈ Ω. It is this last feature of Ω which distinguishes the forestry 
example from other examples of the general model of optimal intertemporal 
allocation that have been studied in detail in the literature.

The properties of the reduced form utility function, u, depend on properties of 
both Ω and w. In what follows, we assume that w is continuous, concave and 
increasing on ℝ+, twice continuously differentiable on ℝ++ with w′(c) 〉 0 and w″
(c) 〈 0 for all c 〉 0, and that it satisfies the end-point condition: w′(c) → ∞ as c → 0. 
Then it can be verified that u is continuous on Ω and twice continuously 
differentiable on the interior of Ω, with u strictly increasing in the first argument 
and strictly decreasing in the second argument. Further, u is concave on Ω, with 

u strictly concave in each argument separately.

These properties of the reduced form model (Ω, u, δ) ensure that the discounted 
utility sum along any path 〈xt〉 from x ∈ I, Σ∞ 0 δt u(xt, xt +1), is absolutely 
convergent and that there is a unique optimal path from each initial stock x ∈ I. 
The value function associated with our dynamic optimization problem is a 
function V: I → ℝ, defined by:
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where 〉x* t〉 is the optimal path from x ∈ I. The standard theory can then be used 
to show that V is a concave and continuous function of x in I, and that it satisfies 
the principle of optimality:

 (p.56) where Ω(x) ≡ {y: (x, y) ∈ Ω} = [0, 1 − x]. Further, a path 〈xt〉 from x ∈ I is 
optimal if and only if: V (xt) = u(xt, xt +1) + δV (xt +1) for all t ≥ 0.

The policy function h: I → I is defined by:

noting that, for each x ∈ I, the maximization problem involved has a unique
solution. The standard theory (see, for example, Mitra 2000) can be used to 
verify that h is continuous on I, and for all (x, y) ∈ Ω, with y ≠ h(x), we have:

Further, a path 〉xt〉 from x ∈ I is optimal if and only if x t+1 = h (xt) for all t ≥ 0.3

In our framework, given x ∈ I, it need not be the case that (x, h(x)) belongs to the 
interior of Ω. However, if for some x ∈ I, we do have (x, h(x)) and (h(x), h 2(x)) in 
the interior of Ω, then (using the differentiability property of u in the interior of 
Ω) the following Ramsey—Euler equation must hold:

(RE) 
Stationary Optimal Stock

A stationary optimal stock (SOS) is any stock k ∈ I, satisfying h(k) = k. Since h is 
a continuous function from I to I, there exists a stationary optimal stock. The 
definition of Ω implies that h(x) ≤ (1 ≤ x) for all x ≥ 0 and, therefore, for all x ∈ 
(x,̂ 1] where x ̂= (1/2), we must have h(x) 〈 x. Thus, any stationary optimal stock k
must be in [0, x ̂].

When a young tree grows to maturity, the timber content grows from a to 1, 
producing an increase in timber content of  (p.57) (1 − a); the growth rate
associated with this process is therefore b ≡ (1 − a)/a. In what follows we 
assume:

(DP) 
Condition (DP) corresponds to what is called the δ-productivity condition in the 
general theory of optimal intertemporal allocation. When this condition does not 
hold (i.e., δb ≤ 1), there is no incentive to increase the stock of mature trees 
even when one starts from a very low initial stock of mature trees and, in 
particular, h(0) = 0.
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Under condition (DP), a stationary optimal stock k cannot be in [0, x)̂. For, if a 
SOS k ∈ [0, x)̂, then (k, k, k, k, …) is optimal from k ∈ [0, x)̂. But a necessary 
condition for this is: w′(c)(−a) + δw′(c)(1 − a) ≤ 0, where c = (k + a(1 − 2k)) 〉 0, 
and this violates condition (DP). Thus, the only stationary optimal stock is x ̂≡ 
(1/2). Further, since h(0) ∈ I, the argument establishes that h(0) 〉 0, and the 
continuity of h on I also ensures that h(x) 〉 x for all x ∈ [0, x)̂.

The Nature of the Policy Function
A full qualitative description of the policy function enables one to describe the 
behaviour of optimal paths completely. It not only provides information about 
long run optimal composition of forests (which can be studied even without a full 
description of the policy function), but it also tells the forester what harvesting 
and replanting decisions to take today in order to attain optimality.

We have already established some useful properties of the policy function in the 
last two sub-sections of the previous section. In this section we describe two key 
qualitative features of the policy function, a monotone property and what we call 
the Faustmann threshold. After examining these features in the first two 
subsections, we proceed to indicate how these properties enable us to describe 
the transition dynamics and asymptotic behaviour of optimal paths.

 (p.58) A Monotone Property

As already noted, given x ̄∈ (0, 1), it need not be the case that (x,̄ h (x)̄) belongs 
to the interior of Ω. But, if (x,̄ h(x)̄) ∈ int Ω, then one can establish the following 
(local) monotone property:

There is η ∈ (0,x̄) such that h is non-decreasing

(LM) 
To see this, note that we can find ε ∈ (0, x)̄ such that the set A defined by:

is in the interior of Ω. Since h is continuous, we can find η ∈ (0, ε) such that if x ∈ 

N(x,̄ η) then (x, h(x)) ∈ A. Since u is C 2 on int Ω and u 12(x, y) = −a(1 − a)w″(x + 

a(1 − x − y)) 〉 0 on int Ω, it follows that u(x, y) is supermodular on A, and so is 
[u(x, y) + δV (y)]. Now, the standard theory (see Mitra 2000, Topkis 1978) of 
maximizers of supermodular functions ensures that h is non-decreasing on N(x,̄ 
η).

The monotone property, in turn, can be shown to yield the following useful result 
on optimal behaviour at the boundary:

(B) 
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Existence of the Faustmann Threshold

Since the welfare function w is strictly concave, dynamic optimization has a 
tendency to smooth consumption over time. Since future utilities are discounted, 
the consumption smoothing aspect is dampened by the fact that the benefits of 
such smoothing come in the future, which have less weight in the objective 
function compared with the present.

The conflicting effects of impatience and strict concavity of the welfare function 
lead to the following phenomenon in our example of the forestry model. There is 
an initial stock of mature trees x (δ) ∈ (0, x)̂, such that for all initial stocks x ∈ [x
(δ), 1], the Faustmann policy (of cutting down all the mature trees and only  (p.
59) the mature trees, and replanting in the cleared area) is optimal, while for all
initial stocks x ∈ [0, x (δ)), the Faustmann policy is not optimal. We call x (δ) the 

Faustmann threshold. A key feature of the policy function is therefore to 
establish the existence of the Faustmann threshold, which is a bifurcation value
of the initial stock.

To this end, the first observation we make is that for initial stocks x ∈ [0, x)̂ close 
to x,̂ it is not optimal to reach x ̂immediately, even though it is feasible to do so. 
That is, there is ε′ ∈ (0, x)̂, such that for all ε ∈ (0, ε′), we have h (x̂ − ε) ≠ x.̂ To 
see this, let ε ∈ (0, x̂), and note that if h (x ̂− ε) = x,̂ then (x ̂− ε, x,̂ x,̂ ….) is 
optimal from x ̂− ε. However, it can be checked that, for all ε small enough, the 
sequence (x ̂− ε, x ̂+ ε, x̂ − ε, x ̂+ ε, …) is a path from x ̂− ε, which gives a higher 
discounted sum of utilities, by using condition (DP).

This leads us to make the claim that there is some initial stock x ∈ (x ̂− ε′, x)̂ for 
which h (x) 〉 x.̂ For, if the claim is not true, then for all x ∈ (x̂ − ε′, x)̂, it must be 
the case that h (x) 〈 x̂. But, since h (x) 〉 x for all x ∈ [0, x)̂, this implies that for all x
∈ (x ̂− ε′, x)̂, we have (x, h (x)) ∈ int Ω, and further x 〈 h (x) 〈 x,̂ so that (h(x), h 2(x)) 
∈ int Ω. This implies that the Ramsey—Euler equation:

(RE) 
holds for all x ∈ (x ̂− ε′, x)̂. But, it is easy to check that if (RE) holds for x close to 

x,̂ then condition (DP) is violated. This establishes our claim that there is some x 
0 ∈ (x ̂− ε′, x)̂ such that h(x 0) 〉 x.̂

We define the Faustmann threshold as: x(δ) = min{x ∈ [0, x]̂: h(x) = 1 − x}. This 
is well-defined and we have h(x(δ)) = 1 − x(δ). We claim that x(δ) 〈 x.̂ For, if the 
claim is not true, then h(x) 〈 (1 − x) for all x ∈ [0, x)̂. And, since h(x) 〉 x for all x ∈ 
[0, x)̂, we have (x, h(x)) ∈ int Ω for all x ∈ (0, x)̂. Then, the local monotone 
property ensures that D + h(x) ≥ 0 for all x ∈ (0, x)̂. But, this implies4 h (x)̂ ≥ h(x 
0) 〉 x,̂ a contradiction to the definition of a stationary optimal stock. This 
establishes our claim.
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Next we claim that x(δ) 〉 0. For, if the claim is not true, x(δ) = 0, and so h(0) = 1. 
Since Ω(1) = {0}, we also have h(1) = 0.  (p.60) Thus, (0, 1, 0, 1, 0, …) must be 
the optimal path from initial stock 0. But, for ε ∈ (0, 1), the sequence (0, 1 − ε, 0, 
1, 0, …) is a path from 0, which gives a higher discounted sum of utilities for all ε
small enough, by using the fact that w′(c) → ∞ as c → 0. This contradiction 
establishes our claim, and we have x(δ) ∈ (0, x̂).

Notice that by definition of x(δ), we have h(x) 〈 (1 − x) for all x ∈ [0, x (δ)), and 

h(x(δ)) = 1 − x(δ), by continuity of h on I. Further, h(x) 〉 x for x ∈ [0, x (δ)). Thus, 
for all x ∈ (0, x (δ)), we have (x, h(x)) ∈ int Ω, and so D + h(x) ≥ 0 for all x ∈ (0, x
(δ)).

We are now in a position to describe completely the nature of the policy 
function. On [0, x(δ)], we have h non-decreasing with (1 − x) 〉 h(x) 〉 x for all x ∈ 
[0, x(δ)). And, for x ∈ [x(δ), 1], we have h(x) = 1 − x by property (B). This makes 

x(δ) a bifurcation value of the initial stock.

The policy function contains the answer to the question: ‘What is the forester's 
optimal harvesting and replanting decision today?’ If the initial forest has 
mature tree stock x ∈ [x(δ), 1], the forester should follow the Faustmann policy 
of cutting down all the mature trees and only the mature trees (and replanting 
with seedlings in the cleared area). While the Faustmann threshold x(δ) depends 
on the form of the welfare function w, the policy itself (for this range) can be 
described independent of w. If, on the other hand, the initial forest has mature 
tree stock x ∈ [0, x(δ)), the forester should cut down all the mature trees and
some young trees as well (reflecting the fact that h(x) 〈 1 − x), but taking care to 
see that the remaining stock of young trees exceeds x (reflecting the fact that 
h(x) 〉 x), so that one ends up with a higher stock of mature trees tomorrow than 
one started out with today. The tension between consumption smoothing and 
impatience will determine the actual harvest of the young trees, so the 
description of the policy here necessarily depends on the actual welfare function 

w used (apart from a and δ).

Transition Dynamics of Optimal Paths

Our qualitative description of the policy function allows us to fully characterize 
the transition dynamics of optimal paths. To this end, it is convenient to separate 
three ranges of stocks (of mature trees),  (p.61) which we might call low, 
medium and high. Let us define L ≡ [0, x(δ)) to be the range of low stocks, M ≡ 
[x(δ), 1 − x(δ)] to be the range of medium stocks and H ≡ (1 − x(δ), 1] to be the 
range of high stocks.

We start with the range of medium stocks. If x ∈ M, then clearly (x, 1 − x, x, 1 − 

x, …) is the optimal path from x, exhibiting period two cycles.
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Next, consider the range of low stocks. If x ∈ L, then the stock of mature trees 
will increase until it enters the range M (in a finite number of periods), after 
which it will exhibit period two cycles as described earlier.

Finally, consider the range of high stocks. If x ∈ H, then the stock of mature trees 
will enter the low range L in one period, after which it will exhibit the transition 
dynamics described earlier.

History Dependent Long-Run Behaviour

It is clear from the previous sub-section that the middle range of stocks M ≡ 
[x(δ), 1 − x(δ)] is an invariant set of the dynamical system (I, h). All other stocks 
are transitory, and M is the global attractor of all trajectories generated by the 
system.5 Thus, M describes the long run behaviour of the forest stock (of mature 
trees), starting with any initial forest stock.

But, this description hides more than it reveals regarding the long run behaviour 
of the optimally managed forest. As mentioned earlier, in a variety of examples 
of intertemporal allocation models, discounting of future welfares can lead to 
persistent fluctuations, even when the welfare function is strictly concave, since 
discounting dampens the desire for consumption smoothing. (See Mitra and 
Nishimura 2001, for a detailed analysis of the well-known examples of Weitzman 
described in Samuelson 1973 and Sutherland 1968). However, in many of these 
examples, the unique golden rule stock (which is the global attractor in the 
undiscounted case), is replaced by a unique cycle (which becomes the global 
attractor in the discounted case) as representative of long run optimal 
behaviour.

 (p.62) What distinguishes the forestry example is that the period two cycle that 
represents the long run optimal forest depends on the forest one started with. 
This history dependence of long run behaviour can be seen by noting that for 
some initial forest stocks, one may end up at the stationary optimal stock after a 
finite number of periods (thereby exhibiting no fluctuations in harvests in the 
long run) while from other initial forests, one may reach the Faustmann 
threshold x(δ) in a finite number of periods (thereby exhibiting harvests 
fluctuating between x(δ) and (1 − x(δ)) in the long run). And, from still other 
initial forests, one may end up at x ∈ (x(δ), x)̂ after a finite number of periods, 
thereby exhibiting persistent fluctuations in the long run but of smaller 
amplitude than in the previously mentioned case.

The history dependence of long run behaviour suggests the intriguing possibility 
that (when h(0) is small) starting with low initial forest stocks, which differ from 
each other only slightly, one might end up with significantly different long run 
behaviour in terms of the volatility of optimal harvests. This sensitive 
dependence of long run behaviour on initial conditions can be viewed as an ‘anti-
turnpike’ result.
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The nature of the dependence of long run behaviour on history appears to be 
quite complex. If one starts with a completely even distribution of young and 
mature trees (the initial stock is x = x ̂= (1/2)), then of course the long run 
behaviour exhibits no fluctuations in the harvest. But, it is not the case that if 
one starts with two distributions of young and mature trees, the first more 
uneven than the second, one necessarily ends up in the long run with higher 
amplitude fluctuations in the first case compared with the second.

This observation can be seen most transparently as follows. Keeping (a, w) fixed, 
write the policy function as h(x; δ), to explicitly recognize the dependence of the 
policy on the stock (x) and the discount factor (δ). As mentioned earlier h(x; δ) is 
continuous in δ, and that h(0; (1/b)) = 0. Now, consider δ 〉 (1/b), so that (DP) is 
satisfied, but with δ close to (1/b). Then, h(0; δ) will be close to 0, and 
consequently, there must be x ̃∈ (0, x(δ)), such that h(x;̃ δ) = x.̂ Thus, starting 
from the forest consisting of x ̃mature trees and (1 − x̃) young trees, one ends up 
at x ̂in  (p.63) one period, leading to no fluctuations in harvest in the long run. 
On the other hand, from the more evenly distributed initial forest, consisting of 
x(δ) ∈ (0, x)̂ mature trees and (1 − x(δ)) young trees, the optimal harvest 
fluctuates between x(δ) and (1 − x(δ)) in the long run.

Bifurcation Analysis
In this section we provide an analysis of the change in the policy function with 
respect to the parameters of the forestry model. Since the Faustmann threshold 
is a key feature of the policy function, our primary task is to provide a formula to 
characterize this threshold in terms of the parameters of the model.

A Formula for the Faustmann Threshold

We first show that the value function is continuously differentiable on (0, 1 − 

x(δ)). Let us define a function, W: I → ℝ as:

Note that from any x ∈ I, the sequence (x, 1 − x, x, 1 − x, …) is a (feasible) path 
from the initial condition, x. Then, W(x) is the discounted utility sum obtained by 
following this path. Clearly, W is concave and continuous on I, and twice 
continuously differentiable on J ≡ (0, 1), with W″(x) 〈 0 for x ∈ J.

For x ∈ (0, x(δ)), we have, of course V(x) 〉 W(x), while at x = x(δ), we have V(x) = 

W(x). Thus, we obtain:

V(x(δ))−V(x)〈V(x(δ))−W(x) = W(x(δ))−W(x) for x ∈(0,x(δ))

This yields V′−(x(δ)) ≤ W′(x(δ)). For x ∈ M ≡ [x(δ), 1 − x(δ)], we have V(x) = W(x). 
This yields V′ +(x(δ)) ≤ W′(x(δ)). Combining the two inequalities we get V′ −(x(δ)) 
≤ V′ +(x(δ)). But, by concavity of V, we also have V′ −(x(δ)) ≥ V′ +(x(δ)). Thus, V′ +

(x(δ)) = V′ +(x(δ)) and V is differentiable at x(δ), with V′(x(δ)) = W′(x(δ)).
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For x ∈ M ≡ [x(δ), 1 − x(δ)], we have V(x) = W(x), and so V is continuously 
differentiable on (x(δ), 1 − x(δ)). For x ∈ (0, x(δ)), we have (x, h(x)) e int Ω and so, 
by the standard theory (see Benveniste and Scheinkman 1979), we have V
continuously  (p.64) differentiable on (0, x (δ)). We have now demonstrated that 
V is differentiable for all x ∈ (0, 1 − x(δ)). Since V is concave, V is continuously 
differentiable on (0, 1 − x(δ)).6

By the envelope theorem, we have V′(x) = u 1(x, h(x)) = w′ (x + a (1 − x − h(x))) (1 
− a) for all x ∈ (0, x (δ)). By the continuity of V′ at x (δ), we get V′(x (δ)) = w′(x (δ)) 
(1 − a). But, since V′ (x(δ)) = W′(x (δ)), we also have:

And this yields the formula for the Faustmann threshold:

(FT) 
Sensitivity of Long-Run Behaviour

We concentrate on studying the effect of a change in the parameters of the 
model (a, w, δ) on long run behaviour. Since long run behaviour is captured by 
the invariant set [x (δ), 1 − x (δ)], our focus is on how the Faustmann threshold 
changes when the parameters change.

Change in the Growth Rate of Trees

A decrease in a can be interpreted as an increase in the growth rate b = [(1 − a)/
a] achieved as young trees become mature. Note that in order to satisfy 
condition (DP), we must have a ∈ (0, δ/(1 + δ)). As a increases (the growth rate b
falls), the right hand side of (FT) decreases and accordingly the Faustmann 
threshold x (δ) increases monotonically, leading to lower amplitude long run 
fluctuations (on the average).

As a ↑ δ/(1 + δ), it can be checked that the right hand side of (FT) decreases to 
1, and so x (δ) increases to x ̂= (1/2). Thus, in this limiting case, all long run 
fluctuations are eliminated. On the other hand, as a ↓ 0, the right hand side of 
(FT) increases to (1/δ) 〉 1, and so x (δ) decreases to a lower limit x ∈ (0, x)̂. Since 

x 〉 0 the optimal asymptotic composition of the forest is one of part young and 
part mature trees.

 (p.65) Change in Impatience

An increase in the discount factor, δ, is to be interpreted as a decrease in 
impatience. Note that in order to satisfy condition (DP), we must have δ ∈ (1/b, 
1) ≡ (a/(1 − a), 1). As δ approaches the value 1 (the forester becomes very 
patient) the right hand side of (FT) converges to 1 and so the Faustmann 
threshold x̂(δ) converges to x ̂= (1/2). Thus, the maximum amplitude of long run 
fluctuations goes to zero, consistent with the neighbourhood turnpike theorem 
of McKenzie (1982).
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However, as the discount factor decreases from 1 to (1/b), we observe that the 
right hand side expression behaves non-monotonically, first increasing and then 
decreasing. As δ → (1/b), the right hand side of (FT) converges to 1, and again 
long run fluctuations are eliminated in the limiting case (this case being exactly 
the limiting case of the previous subsection when a converges to δ/(1 + δ)).

The expression on the right hand side of (FT) attains a maximum at the critical 
discount factor, δ ̂= 1/√b. Thus, for this discount factor, the corresponding 
Faustmann threshold x(δ) reaches its minimum, and (1 − x(δ)) its maximum, 
producing the highest-amplitude two period optimal cycle among all 
specifications of discount factors.

Change in the Intertemporal Substitution Elasticity

In our framework, the intertemporal elasticity of substitution is the inverse of 
the elasticity of the marginal welfare (for the welfare function w). For example, 
for w(c) = c 1−α/(1 − α), α ∈ (0, 1), the elasticity of the marginal welfare is:

and the intertemporal elasticity of substitution is (1/α).

Intuitively, the higher the intertemporal substitution elasticity, the more the 
agent can tolerate fluctuations, and therefore the less the agent's need for 
consumption smoothing. This leads to a lower Faustmann threshold and, 
therefore, higher amplitude long run fluctuations (on the average). As the 
intertemporal substitution  (p.66) elasticity approaches infinity, the welfare 
function approaches the linear case considered by Faustmann, and the 
Faustmann threshold goes to zero, indicating that in this limiting case, the 
Faustmann policy becomes optimal to follow from all initial stocks.

To confirm this intuition, consider welfare functions w and v with the properties 
as described earlier. Define:

and denote by Rw(c) ≡ −cw″(c)/w′(c) and Rv(c) = −cv″(c)/v′(c), the elasticities of 
the marginal welfare for the two functions for all c ∈ (0, 1). Assume that for all c
∈ (0, 1), we have Rw(c) 〉 Rv(c), so that w has the lower intertemporal substitution 
elasticity for all c ∈ (0, 1).

It is straightforward to verify that:

and a similar formula holds for the function v. Defining Gw(x) = ln gw(x) and 

Gv(x) = ln gv(x) for all x ∈ (0, 1), we then obtain for all x ∈ (0, x)̂,
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This establishes that Gw(x) 〉 Gv(x) and, therefore, gw(x) 〉 gv(x) for all x ∈ (0, x)̂, 
using Rw(c) 〉 Rv(c) for all c ∈ (0, 1).

Given a and δ, the right hand side of (FT) is independent of the welfare function. 
Thus, we must have the Faustmann threshold higher for the welfare function w, 
leading to smaller amplitude long-run fluctuations (on the average), compared to 
the welfare function v.
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(*) The research on this paper was in part carried out during sabbatical leaves of 
Dasgupta at Cornell University and at the Kyoto Institute of Economic Research. 
We would like to thank M. Ali Khan, Adriana Piazza and Henry Wan for 
discussions on the forestry model examined in this paper.

(1) The formal demonstration of this for a general forestry model, is contained in 
Mitra and Wan (1985: Theorem 4.2) for the discounted case, and in Mitra and 
Wan (1986: Theorem 5.2) for the undiscounted case.

(2) This turnpike result was established in Mitra and Wan (1986: Theorem 6.1).

(3) The policy function, h, of course, depends on the parameters of the model (α, 
w, δ). For later use, we note here that the standard theory (see Mitra 2000) also 
establishes that the policy function varies continuously with δ.

(4) Use Proposition 2 on page 99 of Royden (1988).

(5) That is, if 〈xt〉 is optimal from any x ∈ I, then d(xt, M) → 0 as t → ∞, where d(x, 
M) is defined as inf {d(x, z): z ∈ M} for all x ∈ I.

(6) Use Theorem B on page 7 of Roberts and Varberg (1973).


